
keyrock.eu

Jonathan Strong
Senior Developer, Keyrock

Fast, Flexible Iteration
with Rust and Rhai

keyrock.eu1

Keyrock

Pricing Assets at Scale

- Hundreds of markets

- Thousands of Instruments

- Millions of orders placed each day

- Billions in trading volume (USD)

- Trillions of market data events
processed

What’s the Price of an Asset? - Price to buy $1?
- Price to buy $10k?
- Price to buy $1mm?
- Price to buy $10mm?
- Price to buy $10mm in 60s?
- Price to buy $10mm in 1s?

- Liquidity: quantity of a given asset which can
be bought or sold quickly

- Exposure: how much of an asset we have,
which puts us at risk if its price goes down

- Market Direction: is the price going up or
down?

- Latency: how stale is our view of the market?
How long does it take to cancel orders?

- Volatility: how rapidly an asset price changes

- Execution Risk: software bugs, configuration
errors, invalid/wrong data, and other
illustrations of Murphy’s Law in action

- Fees: exchange fees, typically per trade

- SLAs: client agreements to be quoting some
percentage of each period

- Manipulation: Bad actors aempting to change
prices artificially

- Taxes, Regulations

- Opportunity Cost

What’s a Good Price?

Liquidity: Daily
Trade Volume

EUR/USD: $1.8 trillion

BTC/USD: $30 billion

XMR/USD: $100 million

DOGE/USD: $20k

Dierent currency pairs exhibit
starkly dierent trading
characteristics

Core Design Concept:
Customized Application of
Automated Trading to Highly
Dierentiated Individual
Markets

Why Rust?

Python Backtesting Woes (jstrong)

- 75 updates per second
- 500µs per update

Time to process a given amount of historical data

- 1s 37.5ms
- 1h 135s
- 1d 54min
- 1w 6.3 hours

Using my first Rust program:

- 1w 33.4s (738ns per update)

Javascript Woes (Keyrock)

- Merged orderbook from multiple exchanges too
slow

- 100ms GC pauses every 60s

- Type unsafety and runtime errors

Operate directly on native Rust
types in scripting environment

Rhai: Seamless
Rust Integration

// src/orderbook.rs

#[derive(Debug, Default, Clone)]
pub struct Level {
 pub price: f64,
 pub amount: f64,
}

#[derive(Debug, Default, Clone)]
pub struct OrderBook {
 bids: Vec<Level>,
 asks: Vec<Level>,
}

impl OrderBook {
 /// create or update a level on bids side of book at `price`
 /// to `amount`. if `amount == 0`, remove level.
 pub fn set_bid(&mut self, price: f64, amount: f64) { /* .. */ }

 /// create or update a level on asks side of book at `price`
 /// to `amount`. if `amount == 0`, remove level.
 pub fn set_ask(&mut self, price: f64, amount: f64) { /* .. */ }

 /// returns price of highest (best) bid
 pub fn best_bid(&self) -> Option<f64> { /* .. */ }

 /// price of lowest (best) ask level
 pub fn best_ask(&self) -> Option<f64> { /* .. */ }

 /// average of best bid, best ask
 pub fn mid(&self) -> Option<f64> { /* .. */ }
}

Operate directly on native Rust
types in scripting environment

Rhai: Seamless
Rust Integration
(cont)

// src/orderbook.rs

impl rhai::CustomType for OrderBook {

 fn build(mut builder: rhai::TypeBuilder<Self>) {

 builder

 .with_name("OrderBook")

 .with_fn("set_bid", Self::set_bid)

 .with_fn("set_ask", Self::set_ask)

 .with_get("ask", |x: &mut Self| x.ask().unwrap_or(f64::NAN))

 .with_get("bid", |x: &mut Self| x.bid().unwrap_or(f64::NAN))

 .with_get("mid", |x: &mut Self| x.mid().unwrap_or(f64::NAN));

 }

}

// Rhai script

let orders = // .. (OrderBook instance)

let ask_multipliers = [1.001, 1.005];

let bid_multipliers = [0.999, 0.998, 0.997];

// return set of prices for trading engine to target

#{

 asks: ask_multipliers.map(|x| orders.mid * x),

 bids: bid_multipliers.map(|x| orders.bid * x),

}

- Flexible, ergonomic API to define
Rhai API of Rust type

- Easily put instances of native Rust
types in Rhai scope for script to
read, modify

- Return native Rust type from script

- No unsafe semantic mismatch
between Rust and C-based
scripting engine: aligns ownership,
thread synchronization paradigms

Operate directly on native Rust
types in scripting environment

Rhai: Seamless
Rust Integration
(cont)

Introduction to Rhai

Rhai is a scripting
language wrien in
Rust, with a syntax
similar to Rust

// This Rhai script calculates the n-th Fibonacci number

const TARGET = 28;
const REPEAT = 5;
const ANSWER = 317_811;

fn fib(n) {
 if n < 2 {
 n
 } else {
 fib(n-1) + fib(n-2)
 }
}

print(`Running Fibonacci(${TARGET}) x ${REPEAT} times...`);

let result;
let now = timestamp();

for n in 0..REPEAT {
 result = fib(TARGET);
}

print(`Finished. Run time = ${now.elapsed} seconds.`);

print(`Fibonacci number #${TARGET} = ${result}`);

if result != ANSWER {
 print(`The answer is WRONG! Should be ${ANSWER}!`);
}

Dynamic Typing
let x = 42; // value is an integer

x = 123.456; // value is now a floating-point number

x = "hello"; // value is now a string

x = x.len > 0; // value is now a boolean

x = [x]; // value is now an array

x = #{x: x}; // value is now an object map

rhai::Dynamic

fn f(x) {
 x * 2.0
}

let kv = #{
 abc: 123,
 def: 456,
};

// closure
let g = |x| { kv["abc"] * x };

// `this` semantics, method “dot” syntax
fn get() { this.abc }
kv.get()

// function pointer - can be returned and
called from Rust
FnPtr("f")

// function pointer - alternative syntax
let h = f;

Functions

Overloading, Limited Closures

Exceptions,
Try/Catch, and
Throw

Unlike Rust, Rhai is not an
Option/Result World

- Error handling via runtime
exceptions

- A thrown exception comes back to
the native Rust context as a
Result::Err(e)

- As someone triggered by the fehler
crate (#[throws]), I like exceptions
and try/catch for Rhai

Limitations

- No classes
- No traits
- No structs (but enables use of Rust native structs via CustomType)
- No tuples
- No keyword arguments
- No async
- Limited first-class functions
- Limited closures (mutating closed-over variables is diicult)
- Requires &mut self references to Rust types used in Rhai context

Performance
- Best used as a thin layer over Rust

code

- Similar performance to Python (but
most of your program will be in Rust).
Slower than V8 or LuaJIT

- Can be hard to avoid .clone()s

- Compiles to AST, has optimizer, no JIT

- Code shows aention to performance

- Good documentation about
performance pitfalls and how to avoid

Rhai is best used as a thin
layer over Rust, with “heavy
lifting” done on the native
Rust side

Fine-Grained Control

- Extensive (extreme?) use of
feature-gating/conditional compilation

- Provides additional, fine-grained control
over how scripts are executed at runtime

- Single expression-only mode

- “Don’t Panic Guarantee - Any Panic is a
Bug”

- Robust sandboxing limits: length of
strings/arrays/maps, number of
operations, number of modules, max call
stack depth, max expression depth

- Rust ownership rules applied to objects
shared between Rhai, native Rust scopes

Active
Development

Led by Stephen Chung

Additional Tooling,
Resources

- Rhai Book

- Online Playground

- Language Server

- rhai-doc

- REPL

- Vim Plugin

- Sublime Text Package

- VS Code Plugin

- Discord

- Zulip

- Reddit

Case Study

Custom Pricing Indicators

Indicators

- Indicators are transformations of
raw market data used to inform
pricing decisions

- In our usage, a broad term that
encompasses prevailing prices, our
current exposure to given assets,
statistical aggregations, and other
categories of price-related signals

- Generally not rocket
scientist-invented, stochastic
calculus-derived triumphs of
elegant genius. Think diligent
application of market expertise to
constantly changing conditions

Design Goals

Why?

- Flexibility: apply customized logic to
specific markets

- Hot Reloading: modify running
system without bringing it down

- Empowering Non-Developers:
modifying the underlying Rust
system is not something we expect
our trading team to do, but creating
a custom indicator should be
accessible/learnable

Design Constraints

Why not?

- Performance: speed kills in high
frequency trading

- Traceability/Auditability: must be
able to track, debug, and
understand what the state of the
system is and what it was at some
point in the past

Custom Indicators

- Our internal term-of-art which refers to a Rhai-based indicator that
applies custom logic to one or more other indicators

- In more palpable terms, a custom indicator consists of a initialization
script, run once when the custom indicator is created or modified, as well
as a single expression that is executed whenever its inputs change

Custom Indicator
Example

// initialization script
let scope = #{
 max_skew: 8.0,
 max_delta: 200_000.0
};

// update script
if delta_exposure_eur_330 > scope.max_delta {
 0.0
} else if abs(balance_exposure_eur_469 / 100_000.0) > scope.max_skew {
 -sign(balance_exposure_eur_469) * scope.max_skew
} else {
 -balance_exposure_eur_469 / 100_000.0
}

Indicators Composition

- Internal name of our service that

- Listens to raw market data feeds

- Computes updated outputs for the set of existing custom indicators when their inputs change

- Publishes those updated outputs to any subscribers

- Used heavily in production

- Thousands of custom indicators that handle billions of market events per day

Challenges

- Performance

- Tracing/Debugging: Adds Layer of State

- Human Error: NaN Propagation

- Error and Missing Data Handling

- Closure limitations make stateful event
handling tricky, especially when
compared to Lua/Javascript

- Striking the right balance of limited
execution environment (for
performance/security purposes) while
not inhibiting users

- Rhai, as a new language, is still relatively
arcane and unknown

Case Study

Time Series Query Language

Scenario: Rust
Program with Time
Series Data
Scenario: complex, high-performance
Rust system which performs intensive
analysis on large volume time series data

Extensive Rust
functionality
already exists

Rust code has what you need, but
how to apply it to data, especially at
runtime, is a more diicult task

Core idea: provide means to
interact directly with data
inside a running Rust
program, without any layer in
between

Enter Rhai

Easily inspect/transform/modify
program state, data

- Extending a Rhai interface to native Rust code
is easy and fast

- Interact with the state of your Rust program
without needing any layer in between

- Hot reloading: fast feedback cycle

- Performance issues of using a dynamic
scripting language mitigated by performing
heavy lifting in native Rust, which is blazing
fast and guarantees thread safety

- Flexible: run source-controlled, code reviewed
scripts, enable REPL- or query-like interactive
functionality for ad hoc analysis, allow users to
specify a single expression, etc.

Example:
Embedded Time
Series Database

Simplified design for
demonstration purposes

/// fetches `TimeSeries` by name from disk/cache
pub struct DataBase {
 config: Config,
 cache: Arc<DashMap<String, Arc<TimeSeries>>>,
 pool: Vec<IoWorker>,
 logger: slog::Logger,
 // ..
}

/// `self.time.len() == self.data.len()`
pub struct TimeSeries {
 /// time of event
 time: Vec<u64>,
 /// value of measurement
 data: Vec<f64>,
}

Custom
Grafana
Plugin

Rhai as an imperative query language

db, start, end in global scope by convention, expected by script

Script returns a Map<String, TimeSeries>, which is sent back to Grafana in Arrow IPC format

Pass name of native Rust function, so work on large collection happens entirely in native Rust code

Conclusions

Rhai’s Superpower
is its Tight Rust
Integration

Seamless interoperability

For Best Results,
Keep as Much Work
in Rust as Possible

- Design the bridge layer between
Rust and Rhai to keep the heavy
lifting on the Rust side

- Example: instead of calling a Rhai
function on each item in a large
collection, pass a function name (as
a String) to Rust and use the native
Rust function to perform the work

